

IV CONGRESO PALMERO CPAL 2023

SANTO DOMINGO DEL CERRO

LA ANTIGUA GUATEMALA - 2023

Suministro eficiente del recurso hídrico en palma de aceite y su incidencia en productividad"

PhD. Alvaro Acosta García, MsC. Juan Carlos Sánchez, I.A. Ricardo Palma, I.A. Jonny Mérida, P.A. Bequer Martínez

Agradecimientos especiales a

- Grupo Hame
- Agricaribe
- Agroaceite
- Uumbal
- Palma Tica

Consideraciones

- ¿Para qué se riega el cultivo de palma?
- ¿Qué pasa en la planta cuando regamos?
- Que factores asociados a la productividad de la palma afectamos con el riego.
- ¿Qué lámina de agua debo aplicar?
- ¿Con que frecuencia debo aplicar el riego?
- ¿Como mido la eficiencia del sistema de riego?
- ¿Como defino la eficacia del programa de riego?
- ¿Qué controles debo tener?.
- ¿Qué debo esperar con un uso eficiente del agua?

Definición

- El uso eficiente del agua para los cultivos es el proceso de suministrar agua de manera planificada y controlada a los cultivos con el fin de mantener un nivel óptimo de humedad del suelo para un crecimiento, desarrollo y producción de las plantas teniendo en consideración las necesidades del suelo, la planta y el ambiente.
- Garantizar un suministro adecuado de agua para maximizar el rendimiento de los cultivos.
- Para que el uso de agua sea eficiente, se debe tener un cultivo eficiente en condiciones que permitan expresar la eficiencia

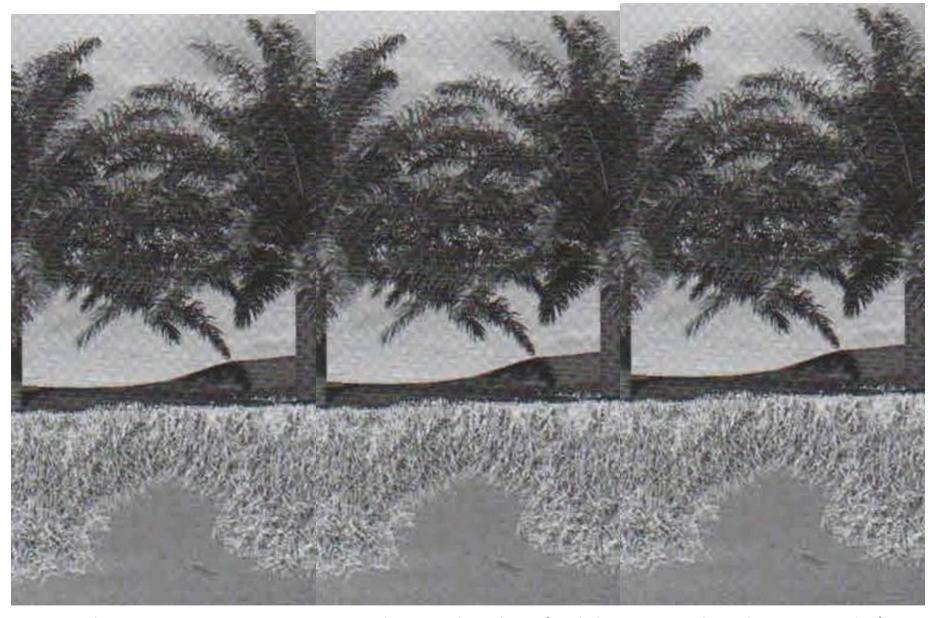
EL SUMINISTRO EFICIENTE DEL RECURSO HIDRICO COMIENZA MUCHO ANTES DE COMENZAR A REGAR

El sistema de raíces de la palma es el único encargado de tomar toda el agua que la planta requiere para su desarrollo

 Con una evapotranspiración potencial de 5 mm/dia, cada palma debe absorber por el sistema radical y transpirar a través del follaje el equivalente a 350 litros de agua por dia

Continnum "suelo – planta – ambiente"

Suelo

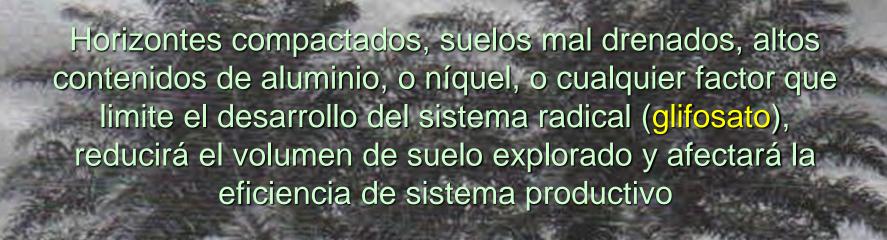

La preparación de la planta para un mejor uso del agua comienza en la labranza.
 Programa de conservación y restauración de suelos

Planta

- Raíces
 - A mayor volumen de suelo explorado por las raíces mayor opción de captar agua, oxigeno y nutrientes
- Follaje
 - Hojas nutridas y turgentes van a transpirar más y a fijar más carbono
 - La cantidad de agua que la planta puede transpirar dependerá además de la cantidad de hojas funcionales y del tamaño de estas hojas.

Ambiente

- Evapotranspiración
- Precipitación
- Distribución de lluvias
- Radiación Solar
- Temperatura


No solamente se necesita una muy buena distribución del agua en el suelo sino también es necesario una muy buena distribución del sistema radical para que este pueda explorar el mayor volumen de suelo posible en búsqueda del agua que necesita

A mayor profundidad de suelo explorable mayor es el volumen para almacenar agua, aire y nutrientes.

Entre más desarrollado y más profuso sea el sistema radical, mayor será la capacidad de la planta de aprovechar eficientemente el suelo incluyendo el agua

Cada palma debería disponer de por lo menos 28 mt3 de suelo

10.000 m2/ha / 143 palmas/ha x 0,4 m de profundidad = 28 m3/palma

14 mt3 de suelo/palma

Nivel freático, horizonte compactado, horizonte impedido (físico, químico o biológico)

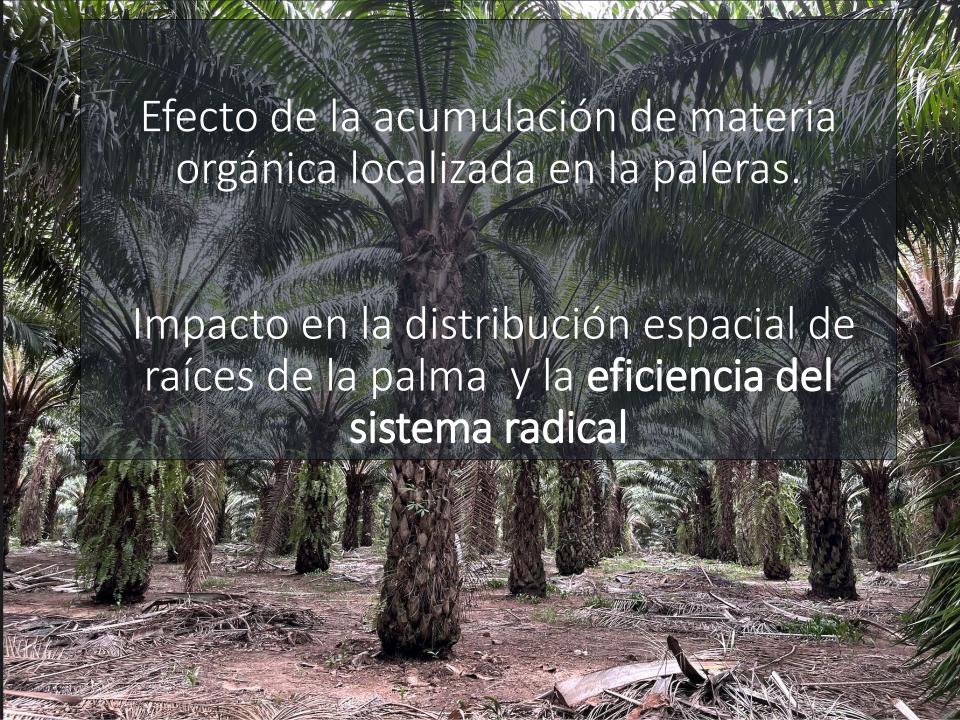
Efecto de diferentes niveles de problema de drenaje en la eficiencia del fertilizante

En un suelo mal drenado la disponibilidad de oxígeno es baja y la planta no transpira

El mal drenaje limita el volumen de suelo ocupado por las raíces lo que afecta la planta durante la época de lluvias dada la inundación y en la época seca ya que no habrá raíces profundas que puedan tomar el agua

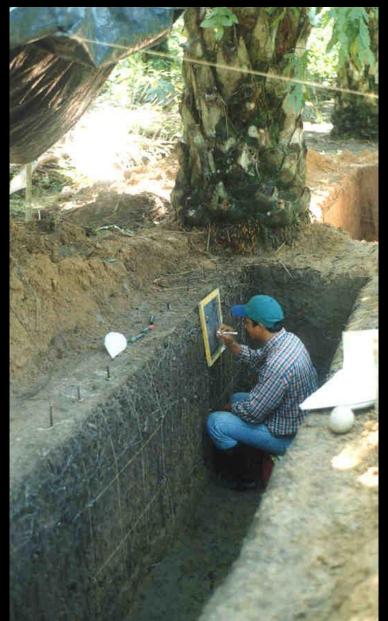
Efecto del silicio en la longitud de raíces y superficie radicular de palma de aceite

utilizando la herramienta WinRhizo ©

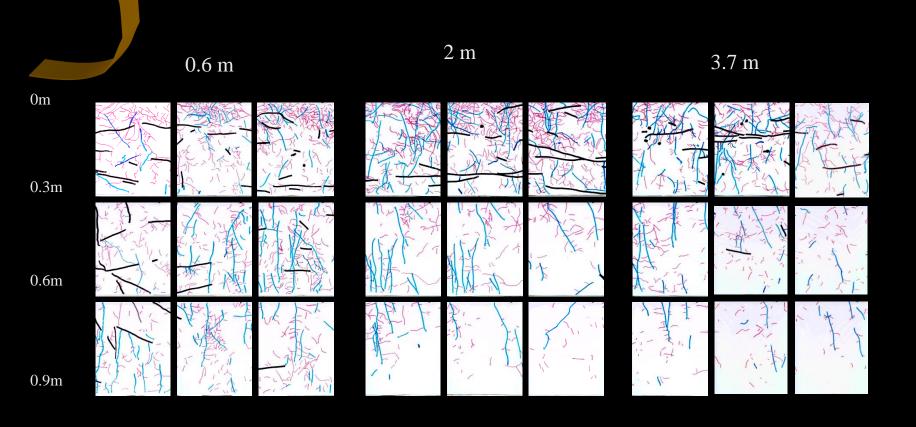

Tino roíz	Tratamianta	Longitud	Díametro	Volumen	Sup. Área
Tipo raíz	Tratamiento	(cm)	(mm)	radical (cm3)	(cm2)
Primarias	Con 11 aplicaciones Si	661	23,16	10,73	7337
	Sin Si	485	22,84	12,87	6784
Secundarias	Con 11 aplicaciones Si	2148	12,21	4,51	19238
	Sin Si	1655	12,07	3,84	12777
Terciarias y Cuaternarias	Con 11 aplicaciones Si	1154	10,43	4,36	10157
	Sin Si	974	6,88	3,07	6462

8,2%

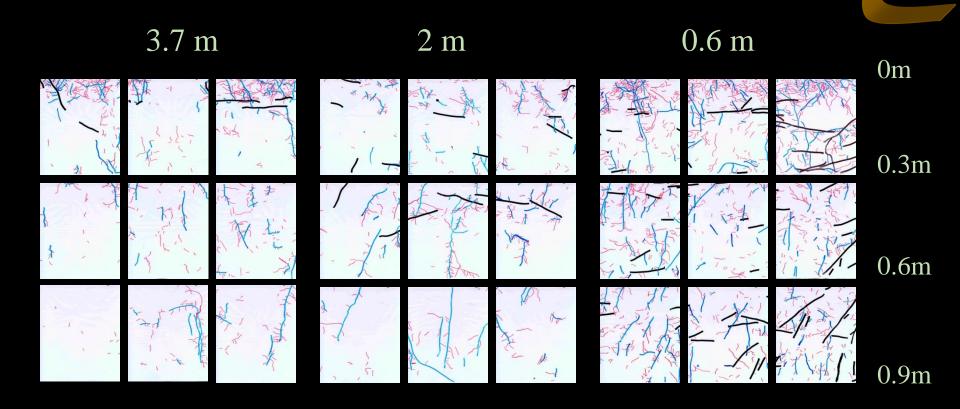
50,6%

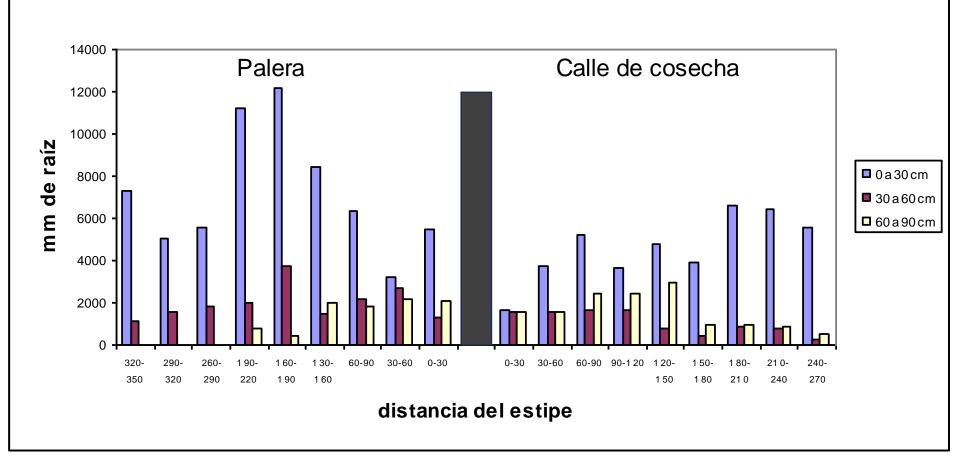

57,2%

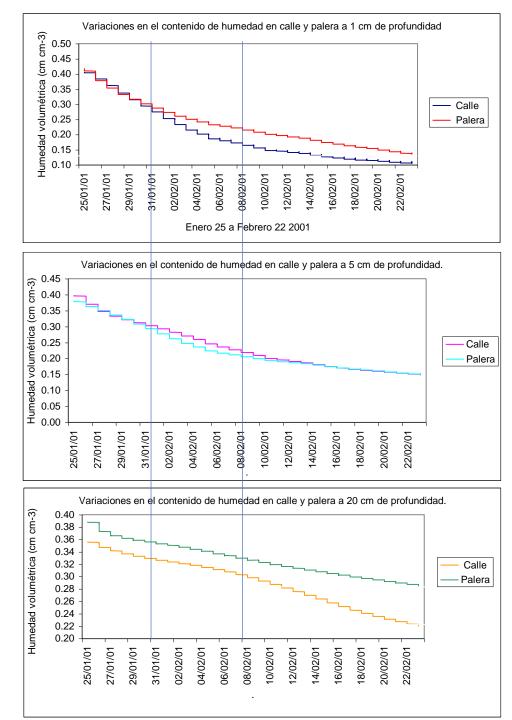
Prueba de t
P=0,10
P<0,05

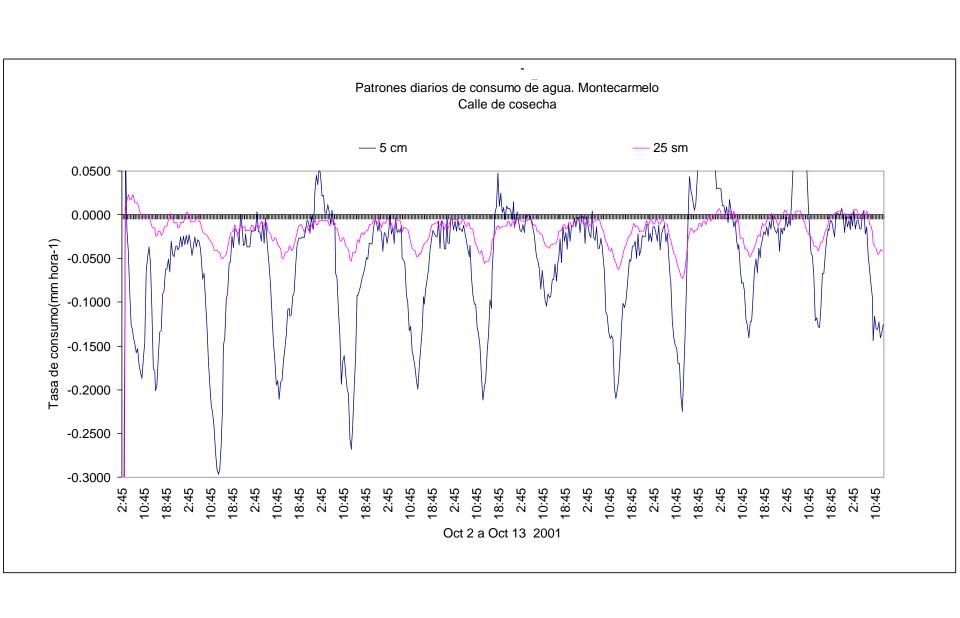


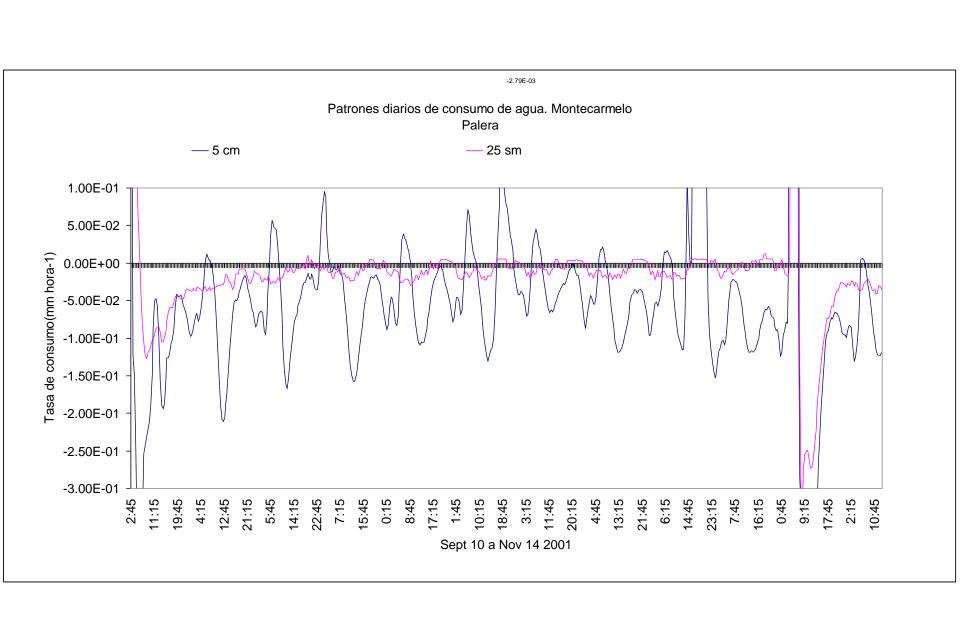
Metodología de campo para establecer mapas del sistema radical.




Calle de cosecha


Distribución espacial del sistema radical en calle de palera





Variación en el contenido de humedad en la calle de cosecha sin acumulación de materia orgánica y en la calle de palera con acumulación continua de materia orgánica durante un periodo de agotamiento de agua. Medidos a diferentes profundidades en el perfil de suelo

Eficiencia relativa del sistema radical en la calle de palera y de cosecha sin acumulación de materia orgánica

		Inicio	Final	Dif % de humedad	Equivalente en mm	
Profundidad		ene-25	feb-22	% de humedad		Dif %
0.5 a 10 cm	Palera	41,18	13,4	27,78	26,4	
	Cosecha	41,18	10,45	30,73	29,2	10,6%
30 a 55 cm	Palera	37,31	28,56	8,75	13,1	
	Cosecha	35,37	22,05	13,32	20	52,7%

Cultivos en pendiente

• Protección de suelo

• Barreras

Terrazas

Follaje

Transpiración y fijación de CO2

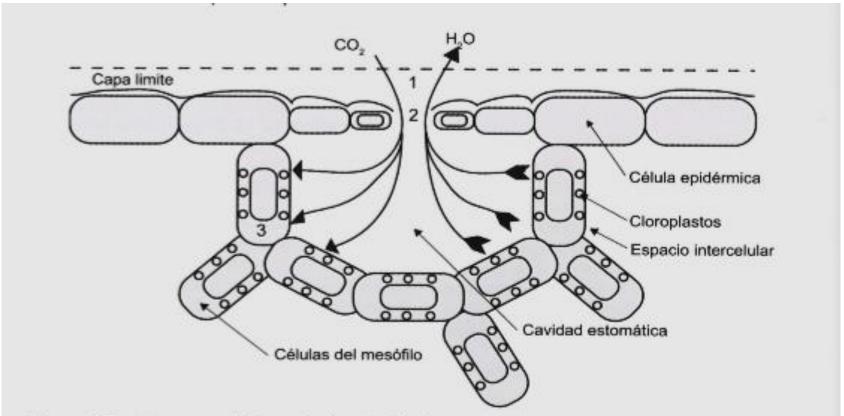
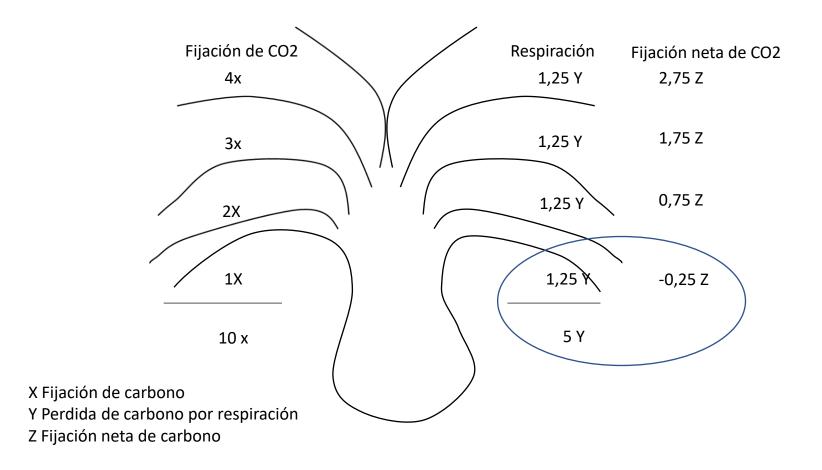



Figura 1. Corte transversal de una hoja a través de un estoma, mostrando puntos de resistencia a la difusión del CO₂ atmosférico hacia los cloroplastos: la capa límite o interface de flujo de aire no turbulento (1), la apertura estomática (2) y las paredes (membranas) y protoplasma de las células del mesófilo (3). El flujo del agua de transpiración se mueve en la dirección opuesta al CO₂ (según Lovenstein et al., 1995).

Mantenimiento del área foliar como una herramienta para el uso eficiente del agua Fijación neta de carbono por niveles del dosel de la palma

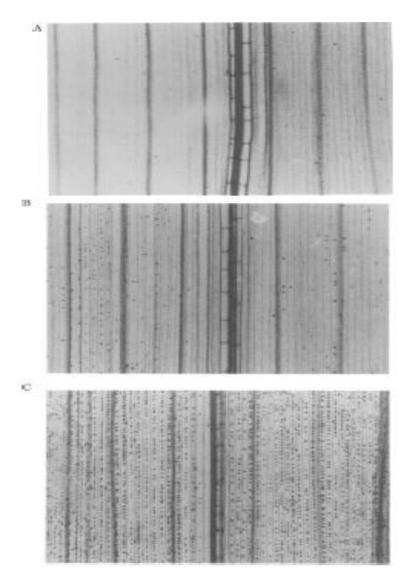
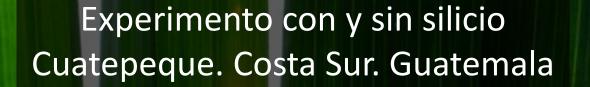
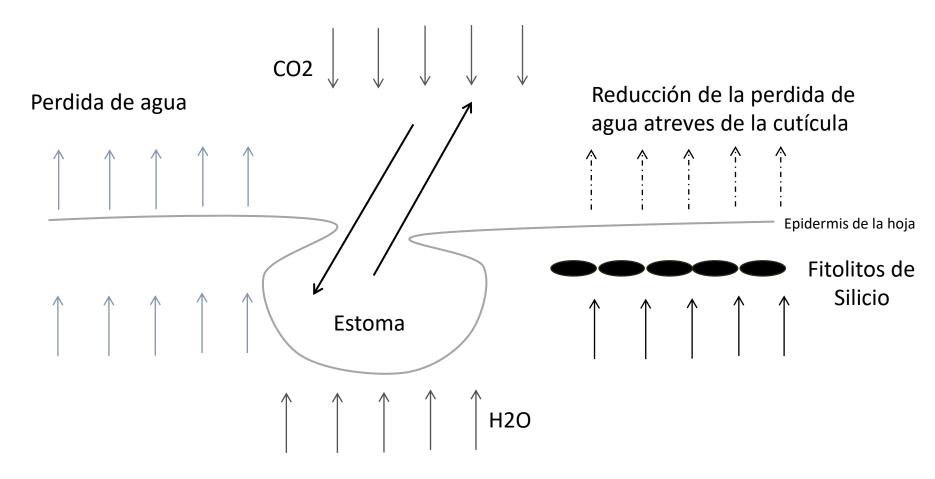



Figure 6.21. Silica bodies detected by soft x-ray. A, no silica body; B, few silica bodies, and C, many silica bodies.



Sin Silicio

Con Silicio 0,5 kg/palma

Efecto del silicio en la resistencia de los tejidos y eficiencia en el uso de agua

Agua aprovechable en la fijación de carbono

Una vez se han dado las condiciones para que el cultivo pueda ser eficiente, mediante una buena preparación de suelos, se cuente con un sistema radical profundo y profuso y se tenga un follaje abundante y vigoroso, ahora si hablamos de

USO EFICIENTE DEL AGUA

Clases de aptitud climática y de suelo para el cultivo de palma de aceite

Aptitud del suelo	Unidadaa	Apto (S1)		Moderado (S2)	Marginal (S3)	Inadecuado (S4)
Grados de limitación	Unidades	Ninguna	Ligera	Moderada	Grave	Muy grave
Clima						
Precipitación	mm	2500 - 3500	< 1700 - 2500 > 3500 - 4000	< 1450 - 1700 > 4000 - 5000	< 1250 - 1450 > 5000 - 6000	< 1250 > 6000
Estación seca (< 100 mm)	mes	Ninguno	1	1 - 2	2-3	> 3
Radiación solar	MJ m ⁻²	13 - 15	< 11 - 13 > 15 - 17	< 9 - 11 > 17 - 19	<7 - 9 > 19 - 21	< 7 > 21
Temperatura media anual	°C	25 - 29	< 22 - 25 > 29 - 32	< 20 - 22 > 32 - 35	< 10 - 20 > 35 - 37	< 10 > 37
Viento	m s ⁻¹	5 - 8	< 3 - 5 > 8 - 10	< 3 > 10 - 15	> 15 - 20	> 20
opografía						
Pendiente	%	0 - 4 0 - 2	4 - 12 2 - 6	12 - 23 6 - 12	23 - 38 12 - 20	> 38 > 20
Prenaje						
Clase de drenaje	-	Moderado a bueno	Bueno a excesivo	Excesivo o pobre	Muy excesivo o pobre	Muy excesivo o muy pobre
Inundación		Nunca	Nunca	Poca inundación	Inundación moderada	Inundación grave

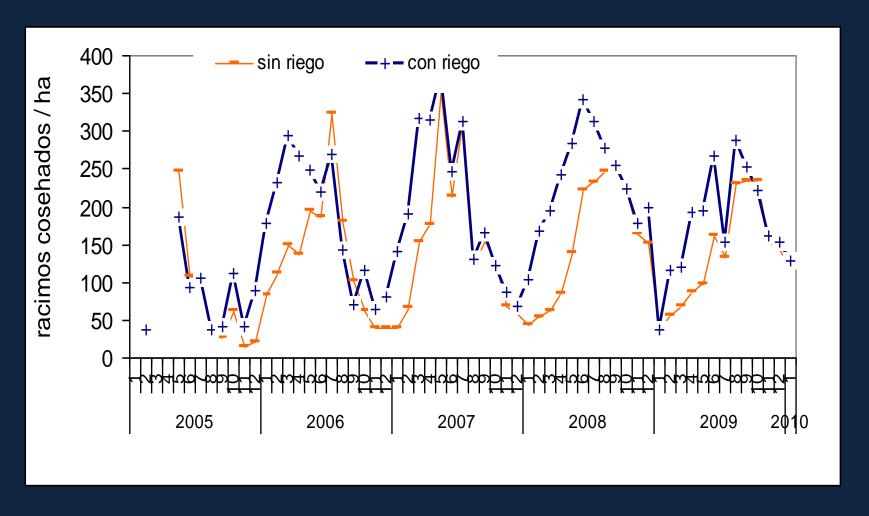
Fuente: Paramananthan 2003

Número de axila foliar	Etapa		Etapa para la de de componente d	Meses < madurez	
Nür	В	Descripción	Peso del racimo	Número de racimo	del racimo
H+30-		Madurez			
H+26-	7	********************	/	Malogro del racimo -	3
H+18-	6	Antesis	Peso del fruto Fin	Malogro inflorescencia	100
		Inicio de rápida	Peso de la Fin		8
H+8 -	5	expansión del eje central	estructura (F3)* Inicio	Aborto	11
H-2 -	4	Diferenciación de la espiguilla	Número de espiguillas y peso de la estructura		16
H-10 -	3	Inicio de la espiguilla	(F2)*		
H-18 -		*********************	Flores por espiguilla	Diferenciación sexual	24
H-24 -	2	Inicio de la primera bráctea debajo de la espiguilla	y peso de la estructura (F1)*		3.550
H-48 -	1	Inicio del primordio floral		Número de	39
4-52	. 0 .	Inicio del primordio foliar		primordios florales	39

Figura 8. Etapas en el desarrollo de la inflorescencia en la palma de aceite (números medios de las axilas de las hojas de varias disecciones en el Sureste de Asia) y las etapas en las cuales se determinan los componentes del rendimiento (Breure y Menéndez, 1990). La hoja más joven completamente abierta se numera como +1. A las hojas más viejas se dan números consecutivamente más altos, y a las hojas más jóvenes, todavía cerradas, números negativos contando hacia el punto de crecimiento.

Efecto de bajas temperaturas y déficit hídrico en aborto de inflorescencias

Maduración

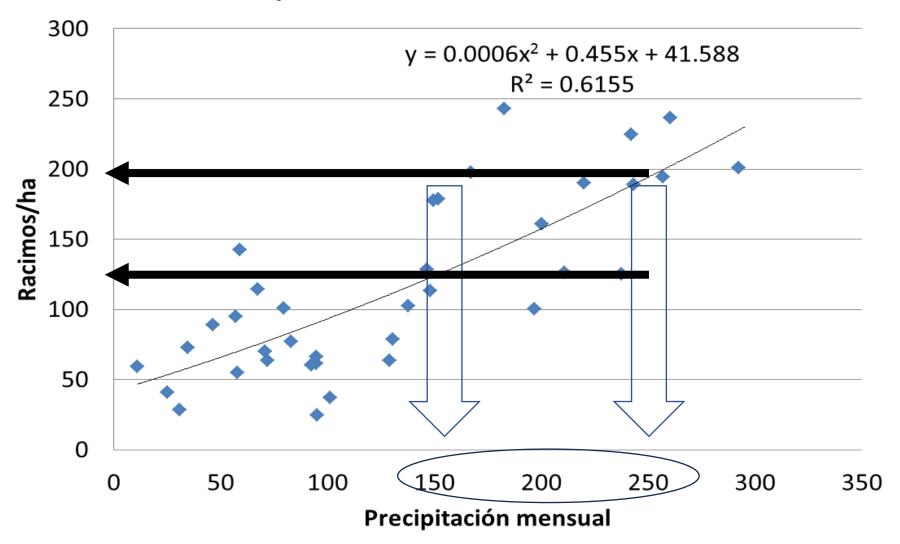

Abortos Frio Femeninas Lluvias Masculinas No Iluvias femeninas Lluvias

Conclusiones experimentos de riego y no riego Costa Sur. Guatemala (5 años de datos)

Finca	Precipitacion media anual	Meses con mas de 150 mm	Tratamiento	Ton/ha/ año	Racimos/palma	Peso de racimos
1	1.606	5	Con Riego	36,55	23,6	10,81
1			Sin riego	9,54	6,21	10,74
2	2.542	6	Con riego	26,98	17,66	10,68
2			Sin riego	6,07	5,04	8,42
3	2.364	6	Con riego	26,48	16,3	11,36
3			Sin riego	8,77	5,35	11,47
				Ton/ha	Racimos/palma	Peso de racimos
Con riego	promedio			30	19,19	10,95
No riego	promedio			8,13	5,53	10,21
Aporte	medio del riego	o en las tres	21,87	13,66	0,74	

• En número de racimos producidos por la palma está dominado predominantemente por el balance hídrico.

Mejoramiento de la productividad por efecto del riego Pacifico Central Costa Rica

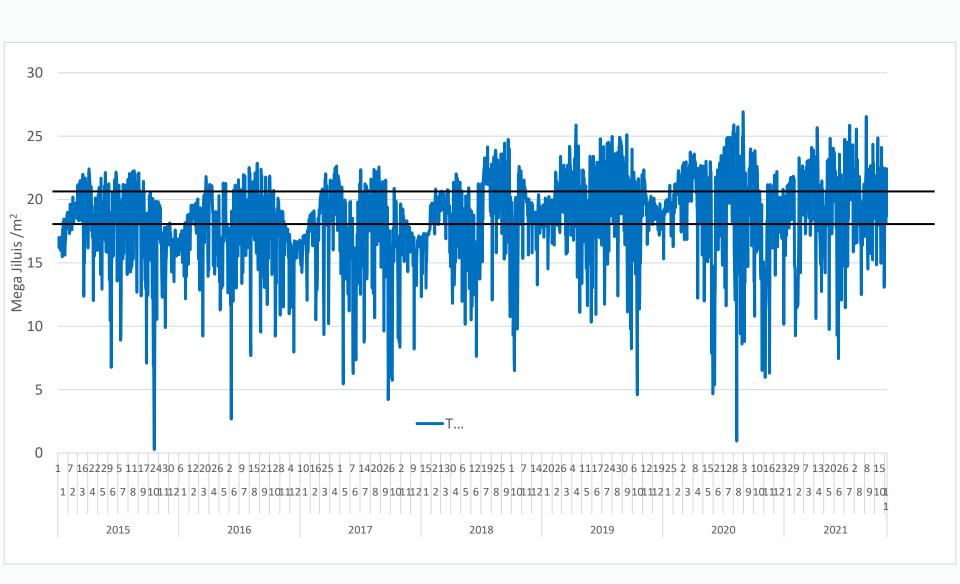


Precipitación mínima critica

Relación entre precipitación y número de racimos por ha cosechados 23 meses después

Relación entre precipitación y número de racimos por ha cosechados 23 meses después Precipitaciones menores a 300 mm

Consideraciones


- La precipitación critica mensual para maximizar la producción de racimos esta entre los por encima de los 200 mm / mes
- La producción de racimos es altamente dependiente de la humedad del suelo y altamente sensible a niveles bajos de humedad.
- El milímetro que define la diferenciación sexual el e ultimo.
- En caso de que falte una fracción del agua requerida, es preferible aplicar el 80% del área con el 100% de la lámina y no el 100% del área con el 80% de la lámina.

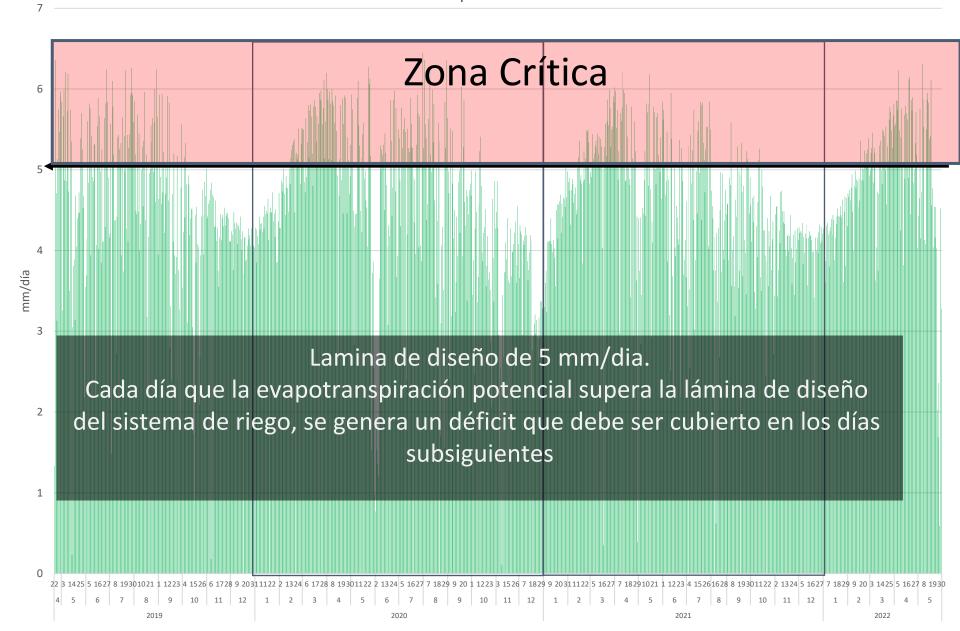
57

Tabla 2. Clases de aptitud climática y del suelo para el cultivo de palma de aceite.

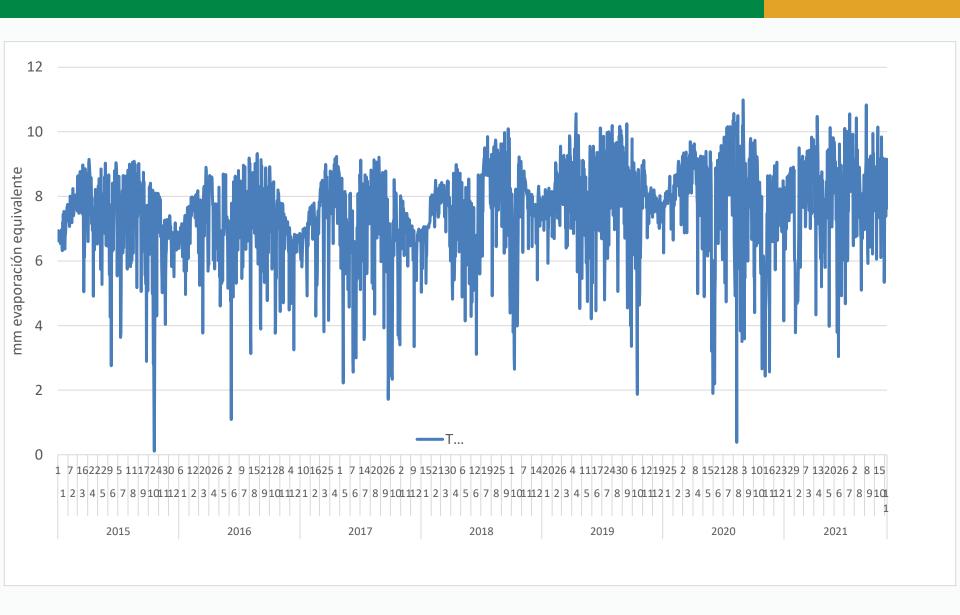
Aptitud del suelo	Unidades	Apto	o (S1)	Moderado (S2)	Marginal (S3)	Inadecuado (S4)
Grados de limitación	Offidades	Ninguna	Ligera	Moderada	Grave	Muy grave
Clima						
Precipitación	mm	2500 - 3500	< 1700 - 2500 > 3500 - 4000	< 1450 - 1700 > 4000 - 5000	< 1250 - 1450 > 5000 - 6000	< 1250 > 6000
Estación seca (< 100 mm)	mes	Ninguno	1	1 - 2	2-3	> 3
Radiación solar	MJ m ⁻²	13 - 15	< 11 - 13 > 15 - 17	< 9 - 11 > 17 - 19	<7 - 9 > 19 - 21	> 21
Temperatura media anual	°C	25 - 29	< 22 - 25 > 29 - 32	< 20 - 22 > 32 - 35	< 10 - 20 > 35 - 37	< 10 > 37
Viento	m s ⁻¹	5 - 8	< 3 - 5 > 8 - 10	< 3 > 10 - 15	> 15 - 20	> 20
Topografía						
Pendiente	%	0 - 4 0 - 2	4 - 12 2 - 6	12 - 23 6 - 12	23 - 38 12 - 20	> 38 > 20
Drenaje						
Clase de drenaje		Moderado a bueno	Bueno a excesivo	Excesivo o pobre	Muy excesivo o pobre	Muy excesivo o muy pobre
Inundación		Nunca	Nunca	Poca inundación	Inundación moderada	Inundación grav

Comportamiento Radiación Solar Mj/m² ESTACION ICC 2015 al 2021

Evapotranspiración potencial FAO Penman-Monteith



Ecuación - Datos Diarios


$$ET_o = \frac{0,408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0,34 u_2)}$$
(6)

donde:

ET.	evapotranspiración de referencia (mm día-1)
R.	radiación neta en la superficie del cultivo (MJ m-2 día-1)
R,	radiación extraterrestre (mm día-1)
G	flujo del calor de suelo (MJ m-2 día-1)
T	temperatura media del aire a 2 m de altura (°C)
\mathbf{u}_2	velocidad del viento a 2 m de altura (m s 1)
e,	presión de vapor de saturación (kPa)
e, e,	presión real de vapor (kPa)
e, - e,	déficit de presión de vapor (kPa)
Δ	pendiente de la curva de presión de vapor (kPa °C-1)
γ	constante psicrométrica (kPa °C-1)

Evaporación equivalente diaria basada en la radiación solar ESTACION ICC 2015 al 2021 Instituto de Cambio Climatico Guatemala

En los últimos los últimos años en la costa sur de Guatemala se registra un incremento considerable en la radiación solar pasando de una media de 18 Mj/m2 en el periodo 2015 a 2017 con picos de radiación diaria de 22 Mj/m2 a una media de 20 Mj/m2 en el periodo 2018 a 2021 con picos de 25 Mj/m2.

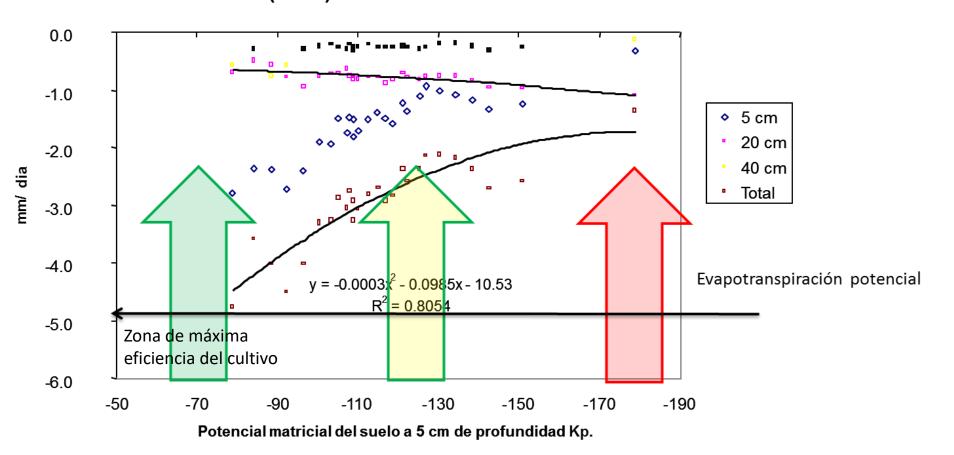
El año 2023 registro las temperaturas mas altas en la historia de las bases de datos

El cambio climático llego hace años

Riego

- Tensión del suelo .
 - Es la fuerza que la planta tiene que vencer para sacar agua del suelo. Relación suelo planta
- Riego superficial vs Riego profundo

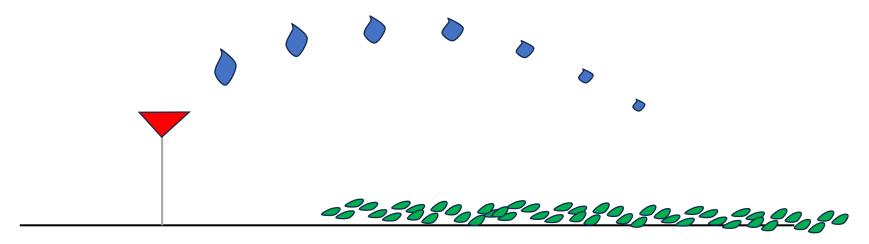
Riego de temporada vs riego continuo


Ferti riego. (tema tratado por Juan Carlos Sanchez)

Tipos de riego y requerimiento hídrico

Sistema de riego	Requerimiento hídrico					
Inundación	>10 lt/seg/ha					
Gravedad (Melgas)	5 lt/seg/ha					
Sub superficial	3 lt/seg/ha					
Presurizado	1 lt/seg/ha					

Dado el agotamiento creciente de las fuentes hídricas y como consecuencia, la condición de escasez progresiva de agua para riego, el riego presurizado se perfila como la opción más viable y sostenible.

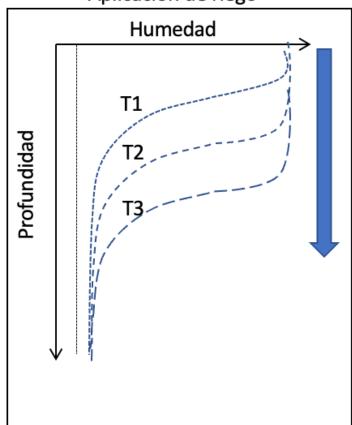

Relación entre potencial matricial del suelo a 5 cm de profundidad y consumo diario de agua por la palma de aceite. . Cumaral (Meta) Colombia.Dic 16/1999 a Enero 19/2000

Kc=1 Kc=0,5 Kc=0,2

Mas húmedo Menos húmedo

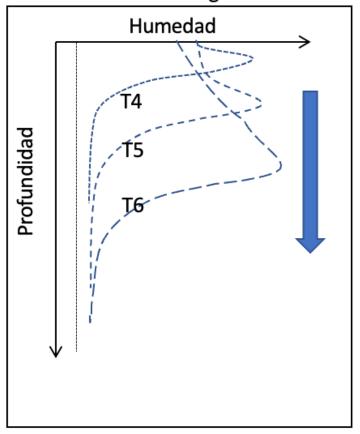
Riego profundo vs riego superficial

	MM aplicados	Mm perdidos	Eficiencia		
Riego superficial	5	1	1/5 = 0,2 80%		
Riego profundo	25	1	1/25 =0,04 96%		


La baja humedad relativa al inicio de la aplicación del riego hace que parte de la lámina aplicada se evapore y no llegue al suelo y se pierda hasta equilibrar la humedad relativa del entorno.

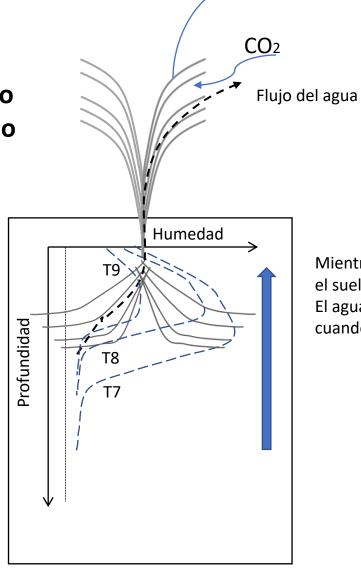
La superficie seca de la vegetación acompañante hace que una porción de la lámina aplicada no llegue al suelo equilibrando la humedad de la superficie de la vegetación.

La superficie del terreno seca y normalmente caliente hace que parte de la lámina aplicada no penetre el suelo y se evapore hasta equilibrar la temperatura del suelo.

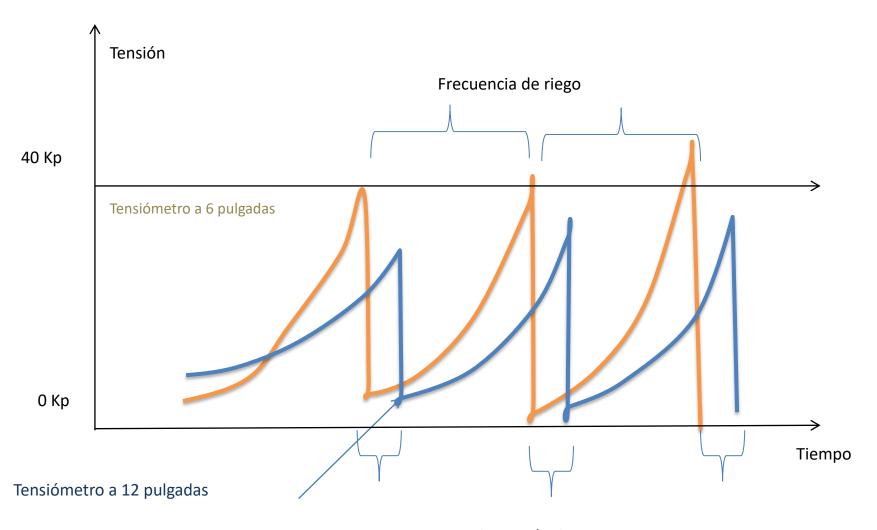

El agua en suelo saturado va hacia abajo. En suelo saturado las plantas no toman agua

Aplicación de riego

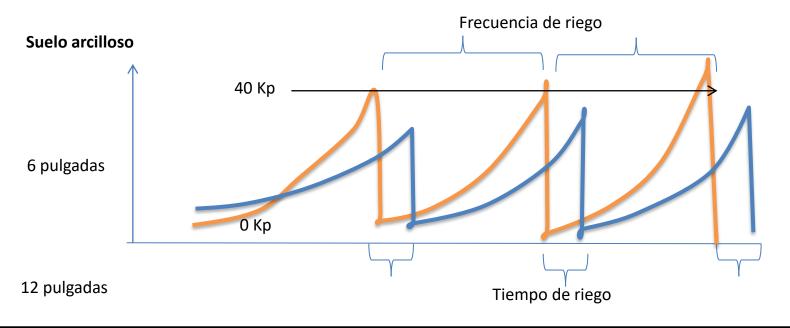
T1, T2, T3 = frente de humedecimiento Durante la aplicación del riego

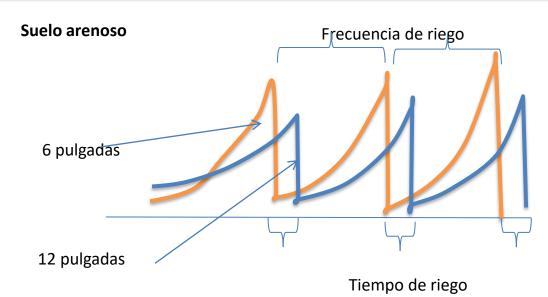

Penetración del agua en el suelo

T4, T5, T6 = frente de humedecimiento una ves se suspende el riego

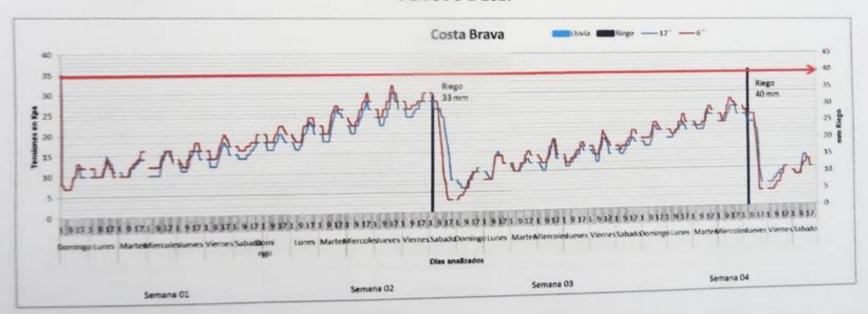

T7, T8 y T9= perfil de agotamiento de la humedad

 H_2O


Mientras se está regando, el suelo está saturado. El agua se aprovecha cuando se para el riego


Patrón de riego por aspersión

Tiempo de riego


Ciclos de riego en suelo arcilloso y arenoso

PERIODO 1-2017

Patrones diarios de tensión en suelo

Riego superficial vs Riego profundo Consideraciones

- Los sistemas de riego presurizado están normalmente calculados para aplicar una lámina equivalente a la evapotranspiración media anual (eg 5 mm/dia). Esta lamina no es ni universal ni constante y es necesario ajustarla según la evapotranspiración potencial acumulada en el ciclo de riego
- Los sistemas de riego están diseñados para mantener la humedad perdida y no para mojarlo, por esto debe comenzarse el programa de riego antes de que el suelo se seque.
- Si el suelo se seca por encima de los 40Kp es necesario aplicar una lámina mayor a la Eto para recuperar la capacidad de campo y retomar ahora si los ciclos de riego.
- El riego profundo permite una mayor eficiencia entre la lámina aplicada y la lámina aprovechada dada la reducción de perdida diaria de lámina en la nivelación de la humedad relativa bajo el dosel y en la superficie de la vegetación y el suelo.
- Aprovechamiento de mayor volumen de suelo. Al humedecer un mayor volumen de suelo, se beneficia el sistema radical profundo de modo que se da un mayor aprovechamiento de la lámina aplicada y mayor estabilidad al cultivo

Riego continuo

CONSISTE EN CUBRIR LAS VENTANAS DE ALTA TENSION DEL SUELO AUN E EPOCAS DONDE NORMALMENTE LLUEVE. EN EL CASO DE LA COSTA SUR DE GUATEMALA ES LA TEMPORADA DE MAYO A DICIEMBRE

Se riega cuando no llueve vs Se deja de regar cuando llueve

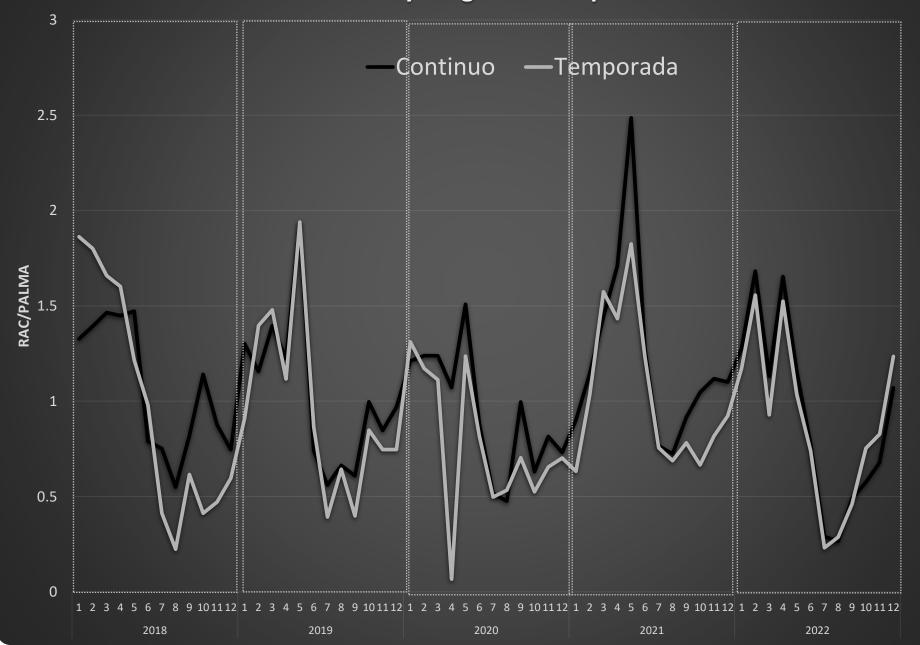
Distribución mensual de la precipitación en dos zonas en la costa Sur de Guatemala Estudio de caso Riego continuo vs riego de temporada.

		MES												
FINCA	AÑO	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
Zona 1	2012	0	10	25	65	252	396	179	400	359	555	19	1	2.262
	2013	34	46	0	224	375	335	436	513	358	533	232	0	3.086
	2014	0	0	39	135	643	649	230	288	362	587	53	0	2.985
	2015	0	0	27	51	350	424	219	340	369	401	357	20	2.558
	2016	3	0	0	0	427	478	170	465	338	287	139	15	2.321
	2017	0	11	55	128	461	626	528	338	638	392	33	9	3.219
	2018	0	0	17	318	540	537	239	625	683	439	89	9	3.496
	2019	41	11	18	9	538	420	304	200	534	187	23	4	2.289
	2020	0	5	75	46	314	507	246	342	491	252	188	0	2.467
	2021	19	6	11	29	336	360	296	676	255	356	209	48	2.601
	2022	15	0	15	201	469	753	301	344	428	321	213	8	3.068
	2023	0	0	39	65	241	560							2.759
Total EL Zona 1		9	8	27	106	412	504	286	412	438	392	141	10	
Zona 2	2012	0	3	0	3	182	315	108	289	136	348	1	0	1.385
	2013	0	5	0	129	245	248	158	182	241	331	73	0	1.612
	2014	0	0	90	18	239	471	144	351	202	225	23	0	1.763
	2015	0	0	13	172	219	304	126	80	300	166	140	0	1.520
	2016	6	0	1	0	334	605	297	414	302	160	87	3	2.207
	2017	0	0	0	12	499	204	248	134	311	148	46	0	1.602
	2018	0	0	0	66	183	252	109	303	370	367	51	4	1.705
	2019	0	10	24	2	180	147	112	249	388	265	3	0	1.381
	2020	0	0	0	3	159	439	176	148	378	307	129	0	1.739
	2021	0	0	4	58	195	255	161	428	316	278	22	0	1.717
	2022	0	0	1	53	253	478	280	145	317	255	92	4	
	2023	0	0	3	3	23	235							1.663
Total Zona 2		0	1	11	43	226	330	174	248	297	259	61	1	
		5	4	19	74	319	417	230	330	367	326	101	6	

Productividad de fincas con riego de temporada vs riego continuo 2014 a 2022

Zona	Finca	Valores	Lote	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total general	Total 8 años	Ganancia 8 años	Ganancia an/año
3	1	TM/Ha U12	3	22,63	26,06	24,63	26,85	36,09	33,16	26,75	29,31	30,48	28,44	233,33	59,13	7,39
			5	23,47	26,75	19,03	22,93	19,67	19,45	19,57	21,25	25,55	21,96	174,20		
		Rac/palma u12	3	7,26	8,77	8,18	7,52	10,52	9,85	7,96	8,39	9,43	8,65	70,61	16,56	2,07
			5	7,66	9,08	6,67	6,90	5,99	5,48	5,66	6,20	8,08	6,86	54,05		
		Kg/ Rac U12	3	22,03	20,85	21,19	24,95	24,04	23,55	23,67	24,75	22,82	23,09	23,23		0,20
			5	21,94	20,68	20,03	23,34	23,23	25,16	24,65	25,70	22,57	23,03	23,17		

La ganancia media anual entre riego continuo y riego de temporada fue de 7,39 toneladas de fruto fresco por año durante 8 años 2,07 racimos/palma año y 0,2 kg /racimo


Zona 2 Bocacosta Riego de temporada vs riego continuo

Año

Zona	Finca	Valores		No. Lote	2018	2019	2020	2021	2022	Total general	Total 5 años	Ganancia	Gananci a/año
3	2	TM/Ha U12	Continuo	13-A	33,19	36,36	38,37	34,21	43,62	37,15	152,56	24,55	6,14
			Temporada	13-B	0,00	28,26	34,25	29,02	36,48	25,60	128,01		
		Rac/palma u12	Continuo	13-A	11,58	12,22	12,08	11,75	14,84	12,50	12,72		1,61
			Temporada	13-B		9,83	11,48	10,34	12,82	11,12	11,12		
		Kg/ Rac U12	Continuo	13-A	20,38	20,83	22,32	20,74	20,99	21,05	21,22		1,11
			Temporada	13-B		19,54	20,87	19,75	20,25	20,10	20,10		

La ganancia media anual entre riego continuo y riego de temporada fue de 6,14 toneladas de fruto fresco por año durante 5 años 1,64 racimos/palma/año y 1,11 kg/racimo

Producción mensual de racimos/palma en sistema de riego continuo y riego de temporada

Costa Sur Comparativo riego continuo vs riego temporada

ZONA Tecun Uman	Finca 1 Finca 2	RIEGO Continuo Temporada	INDICADOR TM/Ha Peso Racimo Rac/Palma TM/Ha Peso Racimo	2018 38,7 13,4 20,2 34,9	2019 38,1 15,7 17 34,4 15,3	2020 35,3 18,8 13,1 32,6 15,8	2021 40,0 20,3 13,8 36,6 17,6	2022 37,6 20 13,2 34,9 18,4	Media 5 años 37,94 17,64 15,46 34,68 16,22	+3,36 +1,42 +0,36
			Rac/Palma	17,6	15,7	14,4	14,5	13,3	15,1	
ZONA	FINCA	RIEGO	INDICADOR	2018	2019	2020	2021	2022		
			TM/Ha	36,1	40,4	33,6	42,9	31,6	36,92	+ 4,2
	Finca 1	Continuo	Peso Racimo	44,1	50,4	45,9	46,2	46,3	46,58	+2,02
Coatepequ			Rac/Palma	12,8	12,4	11,3	14,6	11	12,42	+1,28
e			TM/Ha	31,6	35,5	30,1	35,7	30,7	32,72	
	Finca 2	Temporada	Peso Racimo	41	47,3	44,1	44,8	45,4	44,52	
			Rac/Palma	11,8	11,5	9,3	12,4	10,7	11,14	

Riego continuo. Consideraciones

- El riego continuo permite optimizar el uso de agua cuando la competencia regional por el recurso es baja.
- Tanto a nivel experimental en diferentes motores en la misma finca como a nivel comercial entre fincas con el riego continuo se lograron ganancias de productividad de entre 3,36 y 7,39 con una media de 5,27 toneladas de fruto/ha/ año promedio entre 8 y 5 años consecutivos
- Las ganancias en productividad obtenidas se dan principalmente por una mayor cantidad de racimos entre 0,36 y 2,07 con una media de 1,68 racimos/palma/año
- Igualmente se observaron ganancias en peso de racimos entre 0,2 y 1,22 kg/racimo con una media de 0,69 kg/racimo /año

Conclusiones

- La eficiencia en el uso del agua comienza por el conocimiento del "Continnum Suelo – Planta _ Ambiente" y el fortalecimiento de cada uno de los componentes del sistema para identificar oportunidades de mejora para producir más con un menor consumo de agua.
- La fisiología de la palma ofrece múltiples oportunidades para optimizar la productividad.
- El riego profundo permite optimizar la lámina de riego aplicada garantizando por más tiempo la condición de humedad óptima para las necesidades del cultivo.
- El riego continuo permite aprovechar las ventanas de oportunidad que ofrece el cultivo aun en épocas en donde normalmente llueve.
- La implementación de estos conceptos a nivel comercial ha permitido lograr incrementos significativos en la producción de fruto y sobre todo un mejor uso consciente recurso hídrico.
- Hoy en día el problema no es que el agua sea costosa, el problema es que cada vez hay menos.
- Hacia el futuro sobrevivirán solamente aquellos que usen el agua de manera más eficiente.

La idea no es regar más. La idea es regar mejor

El uso eficiente de recurso hídrico es un aporte a la sostenibilidad

